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Abstract

A structured K definition is easier to write, understand and debug than one single module containing
the whole definition. Furthermore, modularization makes it easy to reuse work between definitions
that share some principles or features. Therefore, it is useful to have a semantics for module
composition operations that allows the properties of the resulting modules to be well understood
at every step of the composition process. This paper presents an abstract semantics for a module
system proposal for the K framework. It describes K modules and module transformations in terms
of institution-based model theory introduced by Goguen and Burstall.
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1 Introduction

The K executable semantic framework [?] allows one to define programming
languages, calculi and even algorithms, by means of configurations, compu-
tations and rules. For example, in order to define a certain programming
language, one must: define the syntax of the language; define the initial con-
figuration of any program written in that language — thus also establishing
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the structure of its configurations; and specify the semantics of programs by
means of rewrite rules that show how the language constructs affect the pro-
gram configuration. More details on the K framework can be found in [?].

The K technique allows for modularization and parallelism by means of
configuration abstraction, which means that in order to add features to a
certain programming language, one only has to add the desired rules and con-
figuration cells, without changing anything that has been written so far. But
adding a certain feature still involves editing the existing definition, which
means creating different extensions of a language, with different sets of fea-
tures; furthermore, if one wants to add, for example, barriers to two or more
programming languages that support threads, one would still have to do it
separately for each of those languages.

Ideally, in order to add new features to programming languages, one should
not have to write anything in the existing definitions. This can be done by
writing a module for each feature, and in order to use the extended language,
by using the existing definition together with the modules that define the
features — as will be seen, this operation is called aggregation. To ensure
that the semantics is preserved between the base definition and the feature
definitions, each module has a section that specifies which constructs must
be available to it and what behavior it expects from them — this is the
’required’ part of the module. To ensure proper encapsulation, every module
should state which constructs and behaviors it defines, that are accessible to
any other module — this is the ’exported’ part of the module.

For example, in order to add the ’++’ increment operation to a very simple
imperative language, IMP (see, e.g., [?]), one would define a module that:

• requires sorts Int, AExp, Id, Map; an operation + on Int; two configura-
tion cells <env/> and <store/>, each holding a Map; additionally, certain
properties of these operations may also be required;

• adds ++Id as a new AExp language construct and defines its desired behavior,

rule <k> ++X:Id => I + 1 ...</k>

<env>... X |-> N:Int ...</env>

<store>... N |-> (I:Int => I + 1) ...</store>

• exports AExp and ++.

Barriers are synchronization mechanisms that ensure that all threads have
reached a certain point in a program before the computation in any of the
threads continues. In order to add barrier as a language construct to IMP,
one would only require a sort Stmt and a cell <thread/>, define the behavior
of a new language construct barrier and export barrier and Stmt.

As mentioned before, in order to get the extended language, one only has
to aggregate the feature modules and the module of the basic definition; the
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names of the required definition in the feature modules need not be the same
as the names in the original definition — before the aggregation mentioned
above, a renaming step can be performed so that the proper names are given to
the syntactic entities and cells. Furthermore, in some cases, the same feature
modules can be reused, with different renamings, for different base languages.

Another way to extend a definition is to use enriching, directly — this is
preferable when the features added are either not complex enough or have
limited potential for reusability.

Another way to reuse a module is by hiding some features. For example,
after defining exceptions in a functional programming language, by means of
call-with-current-continuation (call/cc), one may want to hide the call/cc

construct and allow users of the language to only use the exceptions provided.

The motivation for this paper comes from the need for a module system
for K, and the inspiration for our particular notation and format for modules
comes from previous work by Hills and Rosu [?], where they describe the
intended syntax and usage of K modules from a pragmatic point of view.
Indeed, the distinction between the visible part and the rest of the signature
reduces the interactions between modules, whereas allowing a required part
simplifies dealing with those interactions, however complex, since one does
not need to be concerned with the order in which modules are implemented.
We analyze the theoretical properties of our module system using institution-
based model theory [?]. The K Institution is assumed to have the desired
properties — proving that this is indeed the case is left as future work, and so
it the implementation of our module system. Given the nature of this work,
although the K module system is the main motivation, we believe that the
proposed abstract module system may prove useful to other systems as well.

Our semantics is similar to the module semantics described by Goguen and
Rosu [?,?]. Thus, a module is seen as a presentation in a given institution
(the definition of the module), where the visible part of the module (visible
signature or interface) is a sub-signature of the module definition signature
(the working signature), and the visible theorems are the restriction to this
signature of the set of theorems of the module [?]. In addition to those, a K
module may assume a part of its definition as already implemented and state
this part as a required presentation. As such, the definition of a K module has
the following general form:

module M {
requires ρ, Kρ
exports ψ
Σ,K
}

Σ, ψ and ρ are the working, visible and required signatures, respectively (where
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ψ and ρ are subsignatures of Σ) and Kρ, K are the required and working
theorems, respectively.

We assume the institution we are working in has an inclusion system [?]
on signatures, wherein each signature morphism σ can be factored (uniquely
up to isomorphism) as the composition σ = e; ι of an abstract surjection e and
an abstract inclusion ι. Furthermore, we assume the institution is inclusive
[?] and that the model functor of the institution (Mod) preserves pushouts
and coproducts.

The module operations we define the semantics of are: renaming, hiding,
enriching and aggregation.

Renaming allows the reuse of modules with different names for the required
and visible symbols and it only makes sense if it translates the symbols that
those two signatures share in a consistent manner. Intuitively, renaming does
not add new symbols to the signature, thus the morphims that define the
renaming are surjections.

Hiding allows a part of the visible signature to no longer be visible in the
new module.

Enriching, as opposed to hiding, adds new symbols and sentences to the
module. One can also add new symbols and particularly sentences to the set
of requirements, which is still, by definition, an enriching, but in this case
the effect is that of constraining (if new sentences are added), as the set of
elements required to define the module grows.

Aggregation allows two modules to be combined into one single module.

If a module defines everything it requires, it is called complete. Using all
the above operations on a set of modules, one can define a structured module.
One can obtain a complete structured module even if some or all the base
modules used are incomplete.

1.1 Related Work

Probably the first module system for specification languages was described
by Bergstra et. al. [?]. Their system is not based on institutions, but their
module operations were used in a similar manner in most institution-based
module systems to follow. They do not describe parametrization and, while
not directly specifying a visible sub-signature, parts of the signature can be
hidden using the hiding operation.

The first abstract module system using institution-based model theory was
proposed by Diaconescu et. al. [?]; here, a module was just a presentation,
consisting of a signature in a certain institution, and a set of sentences of the
signature, specifying the behaviour of the constructs. Operations for sum,
renaming and hiding are defined on modules and some properties of those
operations such as distributive laws are analyzed.
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The system proposed by Goguen et. al. [?] allows a module to specify
its imported modules, as well as its visible part. The modules are defined
here using partial signatures. The notion of an implementation module, for
a specification module, is introduced. Hiding, enriching, renaming and ag-
gregation operations are defined for specification modules, and renaming and
aggregation of implementation modules are also introduced.

The module system of the CASL specification language [?] allows hiding
and revealing sorts from a specification. These operations are supported by
our module system as hiding and a particular type of enriching. CASL also
support the free operation, that changes the semantics of a module to the
initial/free model.

Maude’s module system [?] allows module imports, as well as more gen-
eral morphisms, parametrization and freeness constraints. Our system does
not allow freeness constraints, or any operations that specifically target the
semantics of a module. This kind of constraints may be worth exploring once
the K institution has been defined and its liberality explored.

This work in this paper particular is an extension of the abstract module
system introduced by Rosu and Goguen [?] [?] — in particular, the exported
part of the module is defined in the same way as the visible signature, as a
sub-signature of the working signature. In addition, we add the required part
of the module, also a sub-signature of the working signature, and the required
behaviours, as a set of sentences. This addition makes it possible to assume
that some elements a module relies on are already implemented and treat
them as such, after stating the fact that they are required. Even though, at
implementation time, these ’required’ elements make that particular module
incomplete, all the modules involved, implemented separately, will be aggre-
gated into a final system that is complete and additionally makes it easier to
handle the interdependecies between modules, particularly when these are too
complex to structure using only imports and views.

Even though most operations used in the Rosu and Goguen’s module sys-
tem can be adapted without much difficulty to this new setting, keeping track
of the required sub-signature leads to interesting situations and, in fact, to
some particular cases of the module operations than can be significant op-
erations in their own right. An example is enriching, where ’enriching’ the
required sub-signature and in particular the required behaviour has an oppo-
site effect, of ’constraining’ the elements needed for the module. Rosu and
Goguen define the hiding, enriching, renaming, aggregation and parametriza-
tion operations for the modules they define. We only analyze hiding, enriching,
renaming and aggregation here.

Parametrization is an interesting case because, again, there are two direc-
tions from which we can parametrize. We can parametrize a module in a way
similar to the one described by Rosu and Goguen [?]. We need to make sure
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that when we instantiate the module, the module morphisms from parameters
to the modules we use to instantiate are consistent on the required and visible
part, in a manner similar to the way we will require renaming to be consistent.
This way, the instantiated module will have a well defined required signature,
including the (transformed) requirements of ’instantiated’ parameters. On the
other hand, we may be interested in parametrizing the required signature. We
leave to future work an analysis of the interactions between requirements and
parametrization, as well as the usefulness of including both or just one of the
previously mentioned cases of parametrization.

ELAN [?] also uses a module system based on a visible part (specified
by the keyword global) and a hidden signature (specified by the keyword
local). The ELAN module system uses imports, but does not specify re-
quired elements for the module. Our module system allows visibility control
by specifying the exported elements and by using the hiding and enriching
operations. Furthermore, using a required signatures allows more flexibility
in implementation.

2 Background

In this section we introduce some concepts needed for the work presented
in this paper; we assume the reader familiar with basic concepts of category
theory [?] and only go over the concepts to be used in the rest of the paper.

2.1 Inclusion systems

We use the inclusion systems as defined in [?] — intuitively, these systems
generalize the ’natural’ inclusion system of sets, where each function can be
factorized as a composition of a surjection and an inclusion. Unions and
intersections are also generalized as coproducts and respectively products of
inclusions. Inclusive categories and functors are as defined in [?].

Definition 2.1 Let C be a category. An inclusion system is a pair of sub-
categories (I, E) of C, called inclusions and respectively surjections, with the
following properties:

• |C| = |I| = |E|
• I(A,B) has at most one element for each A,B ∈ |C|
• for every A,B ∈ |C|, if both I(A,B) and I(B,A) are non-empty, then
A = B

• for any morphism f ∈ C(A,B), there is a unique C ∈ C and a unique pair
(e, i) ∈ |E(A,C)| × |I(C,B)| such that e; i = f

• I has finite coproducts
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Fig. 1. Pushouts which preserve inclusions

Definition 2.2 A category C is called inclusive (or it has strong inclusions)
if there is a subcategory I of C such that the following hold:

• I is a poset

• I has finite products ∩ (called intersections)

• I has finite coproducts ∩ (called unions)

• for every pair A,B ∈ |C|, A ∪B is a pushout of A ∩B
• I has an initial object ∅

If I(A,B), then let A ↪→ B be the unique morphism in I(A,B).

Definition 2.3 Let A,B be two categories. A functor F : A → B is called
inclusive if it takes inclusions in A to inclusions in B.

Definition 2.4 A category C has pushouts which preserve inclusions if:

• it is inclusive

• for any objects A,A′, B in |C| and any morphisms f : A → A′, ι : A → B,
where ι is an inclusion, there is a pushout {B′, f ′, ι′}, with f ′ : B → B′ and
ι′ : A′ → B′, such that ι′ is also an inclusion (see Figure ??)

2.2 Institutions

Institutions were introduced by Goguen and Burstall [?] as a means to rep-
resent logical systems in a unified, abstract manner: the syntax is given by
a category of signatures and a functor that gives, for each signature, its set
of sentences; the semantics is given by a functor that attaches a category
of models to each signature, and by the satisfaction relation between models
and sentences of the same signature. Many logics have been formalized as
institutions, including equational logic [?], higher order logic [?] and many
others [?].

Definition 2.5 An institution I is a tuple (Sign, Sen,Mod, |=) where:

• Sign is a category; the objects of Sign are called signatures

• Sen : Sign → Set is a functor; the objects of Sen(Σ), where Σ ∈ |Sign| is
a signature, are called the sentences of Σ
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Fig. 2. Model amalgamation

• Mod : Signop → Cat is a functor; the objects of Mod(Σ), where Σ ∈ |Sign|
is a signature, are called the models of Σ

• for each Σ ∈ Sign, |= is a relation |=⊂ |Mod(Σ)|×|Sen(Σ)|; ifM ∈Mod(Σ),
φ ∈ Sen(Σ) and M |= φ, we say M satisfies φ.

For an institution I = (Sign, Sen,Mod, |=), for Σ,Σ′ ∈ Sign, f : Σ → Σ′

and M ′ ∈ |Mod(Σ′)|, Mod(f)(M ′) ∈Mod(Σ) is called the reduct of M ′ via f
and is written M ′ �f . If the signature morphism is clear from the context, we
will write M ′ �Σ. The intuition is that the reduct is that part of the model
of the second signature, that can be recovered using only symbols from the
first signature, and is usually ’smaller’. The meaning of this, as the actual
definition of the reduct, varies across logics. A simple example is for the
case of First Order Logic, for a signature morphimsm that adds a sort s to a
signature Σ. Given a model M of Σ]{s}, its reduct is a model that is exactly
the same as M , but without the interpretation of s.

Conservativeness is a property of signature morphism that ensures that
models are not ’lost’ in translating between signatures. More specifically, it
means that every model in the first signature has a corresponding model in
the second, that reduces to it.

Definition 2.6 Given an institution I = (Sign, Sen,Mod, |=), a signature
morphism f : Σ → Σ′ is conservative if for every model M ∈ Mod(Σ), there
is a model M ′ ∈Mod(Σ′) such that M ′ �f= M

We further describe the notion of inclusive institution, which assumes an
inclusion system on the category of signature, which translates in an intuitive
manner to inclusions of respective sets of sentences and to interpretations.

Definition 2.7 An institution I = (Sign, Sen,Mod, |=) is inclusive if:

• Sign is an inclusive category;

• Sen is an inclusive functor;

• Mod preserves pushouts which preserve inclusions

Model amalgamation is a property that allows consistent aggregation of
signatures - and eventually of specifications, as we will see. It essentially
says that if two signatures ’share’ some symbols, then any two models of the
signatures that are consistent on the ’shared’ symbols can be extended to the
same model in the sum of the two signatures - and there is only one model in
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the sum of the signatures with this property.

Definition 2.8 An institution I = (Sign, Sen,Mod, |=) has model amalga-
mation iff for every pushout square (f : Σ→ Σ1, g : Σ→ Σ2, f

′ : Σ1 → Σ′, g′ :
Σ2 → Σ′) of signatures (see Figure ??), for every M1 ∈ |Mod(Σ1)|, M2 ∈
|Mod(Σ2)| such that M1 �f= M2 �g, there is a unique model M ∈ |Mod(Σ′)|
such that M �f ′= M1 and M �g′= M2.

Without requiring uniqueness, this is called weak amalgamation. A more
restrictive property similar to amalgamation is exactness:

Definition 2.9 An institution I = (Sign, Sen,Mod, |=) is exact if the Mod
functor preserves colimits, i.e. it translates signature colimits to limits in Cat.

A weaker form of exactness, called semiexactness, only requires Mod to
preserve pushouts.

3 The Abstract Module System

In this section, we give the definition of an abstract module, show some of its
properties and define the abstract module operations.

In the following we will assume we are working in an inclusive institution
I = (Sign, Sen,Mod, |=) ; let I be the inclusion subcategory and E the sur-
jection subcategory. The inclusions will also be referred to as ↪→. In addition,
we assume the category of signatures Sign has strong inclusions and pushouts
which preserve inclusions and that Mod preserves pushouts and coproducts.

Although we haven’t yet formalized the K institution, we believe that it will
satisfy many of these properties. The essential property here is the inclusive
signature category, i.e. inclusions, unions and intersections of signatures, in
the intuitive sense. We believe that this is a necessary and likely requirement
for any module system, and that for K, it will result from the inclusion system
on sets. For this latter reason, the sentence functor is also expected to be
inclusive, inclusions on signatures translating to inclusions of their sentence
sets. It may be challenging to analyse the model functor’s effect on pushouts
and coproducts, but we do note that preserving them is only necessary for
aggregation. However, as also mentioned for model amalgamation, at least a
weak version of this property is essential for aggregation in general.

3.1 The Modules

A module can be represented as:

module M {
requires ρ, Kρ
exports ψ
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Σ,K
}

where Σ, ψ and ρ are the working, visible and required signatures, respectively
(where ψ and ρ are subsignatures of Σ) and Kρ, K are the required and
working theorems, respectively. Formally:

Definition 3.1 A module specification is a structure of the form
M = (ρ,Kρ, ψ,Σ, K) where:

• Σ, ρ, ψ ∈ Sign and ιρ : ρ ↪→ Σ, ιψ : ψ ↪→ Σ are signature inclusions; Σ is
the working signature of the module, ρ is the required signature and ψ is
the visible signature (or interface) of M;

• Th(M) = K ∈ Sen(Σ) is the set of working theorems of the module ;

• Rth(M) = Kρ ∈ Sen(ρ) is the set of assumed or required theorems of the
module.

The visible theorems of M are therefore

V th(M) = Kψ = ι−1
ψ ((K ∪ ιρ(Kρ))

•) (1)

where, for a set Γ of sentences with signature Σ, Γ• is its semantic closure:

Γ• = {ρ ∈ Sen(Σ) | ∀M ∈Mod(Σ), if M |= Γ then M |= ρ} (2)

Below we prove that unions of semantically closed sets are also semantically
closed, and in particular this holds for the visible theorems of a module.

Fact 3.2 If Σ ∈ Sign and A,A′ ∈ Sen(Σ) are closed sets of sentences, then:

A ∩ A′ = (A ∩ A′)•

Proof.

The direct inclusion follows from the closure definition: A∩A′ ⊆ (A∩A′)•.
For the inverse inclusion, let a ∈ A ∩ A′. Then a ∈ A and a ∈ A′, and

since A and A′ are both closed, i.e. A = A• and A′ = A′•, this means

• ∀ρ ∈ A, ∀m ∈Mod(Σ) such that m |= ρ, it follows m |= a, and

• ∀ρ′ ∈ A′,∀m′ ∈Mod(Σ) such that m′ |= ρ′, it follows m′ |= a

This means that ∀ρ ∈ A ∩ A′,∀m ∈ Mod(Σ) such that m |= ρ, it follows
m |= a, which means that a ∈ (A ∩ A′)• 2

Fact 3.3 Given a module specification M, its set of its visible theorems is
semantically closed:

V th(M) = V th(M)•

Proof.
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Let Γ = K ∪ ιρ(Kρ) ∈ Sen(Σ).

Since the working institution is inclusive, it follows

V th(M) = ι−1
ψ (Γ•) = Sen(ψ) ∩ Γ• (3)

Since Sen(ψ) is trivially closed, using Fact ?? (note that K and iρ(Kρ)
have the same signature Σ):

V th(M)• = (Sen(ψ) ∩ Γ•)• = Sen(ψ) ∩ Γ• = V th(M) (4)

2

A module is complete if it defines everything it requires. We need this no-
tion because we are not working with partial signatures: we have defined the
required signature to be a subsignature of the working signature; therefore,
what we really describe when we write the definition is the part of the work-
ing signature not contained in the required signature, so if what the module
defines does not in fact entail what it requires, the module is incomplete, and
we cannot work with it. Ideally, after applying module operations, we will
eventually obtain and work with complete modules.

Definition 3.4 We say a module M = (ρ,Kρ, ψ,Σ, K) is complete if
ιρ(Kρ) ⊆ K•

Consequently, the visible theorems of a complete module are Kψ = ι−1
ψ (K•)

The module operations we will further define will be special cases of module
morphisms, as defined below:

Definition 3.5 The module specification morphisms (g, h) :
(ρ,Kρ, ψ,Σ, K)→ (ρ′, Kρ′ , ψ

′,Σ′, K ′) are pairs of morphisms where

• g : (ρ,Kρ)→ (ρ′, Kρ′) is a presentation morphism

• h : ψ → ψ′ is a signature morphism with h(V th(M)) ⊆ V th(M′)

So essentially, a module morphism specifies transformations on the visible,
as well as on the required part of the module.

A model of a module must follow the behaviour specified by the visible
theorems. Additionally, it must have a respective model that satisfies the
required behaviour. This follows automatically if the model can be extended
to the full, hidden signature.

Definition 3.6 Let M = (ρ,Kρ, ψ,Σ, K) be a module specification and m
a ψ model. Then model m satisfies the module specification, or m |= M, if
m |=ψ V th(M) and there is an expansion m′ of m to Σ such that m′ �ρ|=ρ Kρ,

Note 1 If all the inclusions are conservative signature morphisms, then
m |=ψ V th(M) is a sufficient condition for module satisfaction: if there is
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an expansion m′ of m to Σ, then it follows using the definition of the satis-
faction relation that m′ �ρ|=ρ Kρ.

3.2 The Module Operations

In this subsection, we will define and analyze the semantics of the following
module operations: renaming, hiding, enriching and aggregation; parametriza-
tion will be analyzed as future work.

Renaming allows reusing modules by translating the names of the required
and visible symbols. Intuitively, renaming does not add new symbols to the
signature, thus the morphims that define the renaming are surjections. Hiding
allows a part of the visible signature to be ’retracted’ or hidden, thus no longer
accessible to other modules. Enriching adds new constructs and behaviours
to the module. Similarly to the way renaming can be seen as a ’surjection’
on modules, hiding and enriching make use of inclusions. Aggregation allows
two modules to be combined into one single module.

For the rest of this section, we will consider this small example:

module Xor

requires sort Bool

requires op or: Bool Bool -> Bool

requires op not: Bool -> Bool

requires op and: Bool Bool -> Bool

exports op xor: Bool Bool -> Bool

exports sort Bool

rule X:Bool xor Y:Bool => (X and not Y) or (not X and Y)

end module

3.2.1 Renaming

Renaming only makes sense if it translates the symbols that those two signa-
tures share in a consistent manner. Then, renaming can be performed on the
union of the two signatures.

This is what the following lemma states:

Lemma 3.7 • Let ρ, ψ ∈ Sign and surjections g : ρ → ρ′, h : ψ → ψ′ such
that if ιρ; g = eg; ιg is the unique factorization of ιρ; g and ιψ;h = eh; ιh is
the unique factorization of ιψ;h, then eg = eh = e (where ιρ : ρ ∩ ψ ↪→ ρ,
ιψ : ρ ∩ ψ ↪→ ψ); then there is a unique f(g, h) : ρ ∪ ψ → ρ′ ∪ ψ′ such that
(ρ ↪→ ρ ∪ ψ); f = g; (ρ′ ↪→ ρ′ ∪ ψ′) and (ψ ↪→ ρ ∪ ψ); f = h; (ψ′ ↪→ ρ′ ∪ ψ′)
and furthermore f(g, h) is a surjection as well.

• Let ρ, ψ ∈ Sign, ιρ : ρ ∩ ψ ↪→ ρ, ιψ : ρ ∩ ψ ↪→ ψ and a surjection f :
ρ ∪ ψ → (ρ ∪ ψ)′; then there is a unique pair of surjections g(f) : ρ → ρ′,
h(f) : ψ → ψ′ such that if ιρ; g(f) = eg; ιg is the unique factorization of
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ιρ; g(f) and ιψ;h(f) = eh; ιh is the unique factorization of ιψ;h(f), then
eg = eh = e and furthermore (ρ ∪ ψ)′ = ρ′ ∪ ψ′

• If g : ρ→ ρ′, h : ψ → ψ′ are as above then g(f(g, h)) = g and h(f(g, h)) = h

• If f : ρ ∪ ψ → (ρ ∪ ψ)′ is as above then f(g(f), h(f)) = f

Proof.

• Since Sign has strong inclusions, it follows that the union is a pushout of
any pair of inclusions from the same object. Then let (ι1, ι2, ρ

′ ∪ ψ′) be the
pushout of (ιg, ιh) (it follows ιg; ι1 = ιh; ι2).

Since (ρ ↪→ ρ ∪ ψ, ψ ↪→ ρ ∪ ψ, ρ ∪ ψ) is a pushout in Sign and ιρ; g; ι1 =
e; ιg; ι1 = e; ιh; ι2 = ιψ;h; ι2, it follows there is a unique f : ρ ∪ ψ → ρ′ ∪ ψ′
such that (ρ ↪→ ρ ∪ ψ); f = g; ι1 and (ψ ↪→ ρ ∪ ψ); f = h; ι2.

In order to prove f is a surjection, let f = ef ; ιf be the unique fac-
torization of f and (ψ ↪→ ρ ∪ ψ); ef = e′; ι′ the unique factorization of
(ψ ↪→ ρ ∪ ψ); ef . Let X be such that ef : ψ ∪ ρ→ X.

Then using the properties of f , (ψ ↪→ ρ ∪ ψ); f = (ψ ↪→ ρ ∪ ψ); ef ; ιf =
e′; ι′; ιf = g; (ψ′ ↪→ ρ′ ∪ ψ′) and since g ∈ E and due to the uniqueness of
the factorization, it follows e′ = g and (ψ′ ↪→ ρ′ ∪ ψ′) = ι′; ιf .

Therefore ι′ : ψ′ → X and analogously we can find an inclusion ι′′ : ρ′ →
X; since the union is a coproduct, it follows there is a unique inclusion
ι′′′ : ψ′ ∪ ρ′ → X; given ιf : X → ψ′ ∪ ρ′ it follows X = ψ′ ∪ ρ′, therefore
ιf = 1ψ′∪ρ′ and ef = f , therefore f is a surjection.

• Let g; ι′1 = (ρ ↪→ ρ∪ψ); f be the unique factorization of (ρ ↪→ ρ∪ψ); f and
h; ι′2 = (ψ ↪→ ρ ∪ ψ); f , the unique factorization of (ψ ↪→ ρ ∪ ψ); f (with
g, h ∈ E).

Let (ι1, ι2, ρ
′ ∩ ψ′) be the pullback of (ι′1, ι

′
2, (ρ ∪ ψ)′). Since (ιρ; g); ι′1 =

ιρ; (ρ ↪→ ρ ∪ ψ); f = ιψ; (ψ ↪→ ρ ∪ ψ); f = (ιψ;h); ι′2, it follows there is a
unique f ′ : ρ ∩ ψ → ρ′ ∩ ψ′ such that f ′; ι1 = ιρ; g and f ′; ι2 = ιψ;h.

From here we can derive the unique factorizations for ιρ; g as ef ′ ; (ιf ′ ; ι1)
and for ιψ;h as ef ′ ; (ιf ′ ; ι2) with the desired property (where f ′ = ef ′ ; ιf ′ is
the unique factorization of f ′)

13
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Let ι : ρ′ ∪ ψ′ ↪→ (ρ ∪ ψ)′ be the inclusion defined by the coproduct
property of the union. In order to prove (ρ ∪ ψ)′ = ρ′ ∪ ψ′, it is enough to
find an inclusion from (ρ ∪ ψ)′ to ρ′ ∪ ψ′.

Since as shown ιρ; g; ι′1 = ιψ;h; ι′2 it follows:
· since Sign has strong inclusions, (ρ ∪ ψ, ρ ↪→ ρ ∪ ψ, ψ ↪→ ρ ∪ ψ) is a

pushout in Sign, therefore, since by construction g; ι′1 = (ρ ↪→ ρ ∪ ψ); f
and h; ι′2 = (ψ ↪→ ρ ∪ ψ); f , f is unique with this property.
· since inclusions are monomorphisms and (ρ′ ↪→ ρ′ ∪ ψ′); ι = ι1 and (ψ′ ↪→
ρ′ ∪ ψ′); ι = ι2, it follows ιρ; g; (ρ′ ↪→ ρ′ ∪ ψ′) = ιψ;h; (ψ′ ↪→ ρ′ ∪ ψ′) and
given (ρ ∪ ψ, ρ ↪→ ρ ∪ ψ, ψ ↪→ ρ ∪ ψ) is a pushout in Sign, there is a
unique f ′′ : ρ ∪ ψ → ρ′ ∪ ψ′ with g; (ρ′ ↪→ ρ′ ∪ ψ′) = (ρ ↪→ ρ ∪ ψ); f ′′ and
h; (ψ′ ↪→ ρ′ ∪ ψ′) = (ψ ↪→ ρ ∪ ψ); f ′′ and let f ′′ = ef ′′ ; ιf ′′ be its unique
factorization.

Then
(ρ ↪→ ρ∪ψ); f ′′; ι = g; (ρ′ ↪→ ρ′∪ψ′); ι = g; ι1 and analogously (ψ ↪→ ρ∪

ψ); f ′′; ι = h; ι2, therefore using the previous result f = f ′′; ι = ef ′′ ; (ιf ′′ ; ι)
and since f is a surjection, it follows ιf ′′ ; ι is an identity and ιf ′′ : (ρ∪ψ)′ ↪→
ρ′ ∪ ψ′
Since (ρ∪ψ)′ ↪→ ρ′∪ψ′ and ρ′∪ψ′ ↪→ (ρ∪ψ)′, it follows ρ′∪ψ′ = (ρ∪ψ)′

• The last two claims follow from the points above.

2

If the renamings on the visible and required part are consistent, then the
renamed module can be retrieved from the pushout of the original hidden
signature and the union of the renamed interfaces. If the signatures are sets,
this means that we only rename the interfaces, and possibly symbols in the
hidden signature if they clash with new names in the interfaces, the latter
being added in the new hidden signature as distinct copies.

Definition 3.8 Let M = (ρ,Kρ, ψ,Σ, K) be a module specification and g :
ρ → ρ′, h : ψ → ψ′ surjective signature morphisms such that if (ρ ∩ ψ ↪→
ρ); g = eg; ιg and (ρ ∩ ψ ↪→ ψ);h = eh; ιh are the unique factorizations, then
eg = eh = e. The renaming of M by (g, h), written M∗ (g, h), is defined as

M∗ (g, h) = ρ′, g(Kρ), ψ
′,Σ(g,h), f(g, h)Σ(K))

where (ι, f(g, h)Σ,Σ(g,h)) is the pushout of ((ρ ∪ ψ ↪→ Σ), f(g, h)).

Given the lemma and since ρ ↪→ Σ, ψ ↪→ Σ and Sign has pushouts that
preserve inclusions, the definition is consistent.

We also note that given the assumption on the model functor, the renamed
interfaces are included in the new hidden signature: since f(g, h) : ρ ∪ ψ →
ρ′ ∪ ψ′, it follows (ρ′ ↪→ ρ′ ∪ ψ′); ι : ρ′ ↪→ Σf and (ψ′ ↪→ ρ′ ∪ ψ′); ι : ψ′ ↪→ Σf ,
therefore M∗ (g, h) is a module specification in the sense of Definition ??.

14
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Fig. 4. Renaming

Equivalently, the renaming can be defined using a single morphism on
the unions f : ρ ∪ ψ → ρ′(f) ∪ ψ′(f) (as in the lemma) as M ∗ f =
(ρ′(f), g(f)(Kρ), ψ

′(f),Σf , fΣ(K)).

The following theorem ensures that the required and visible sentences are
translated consistently via renaming.

Theorem 3.9 The renaming of a module specification is a module specifica-
tion morphism (in the sense of Definition ??).

Proof.

Let M∗ (g, h) be the renaming of M by (g, h). Then g, h are as follows,
fulfilling the conditions of Definition ??:

• g : (ρ,Kρ) → (ρ′, g(Kρ)) is trivially a presentation morphism (g(Kρ) |=
g(Kρ));

• for h : ψ → ψ′, since h(V th(M)) ⊆ V th(M′) and h; ιψ′ = ιψ; f(g, h)Σ(K),
it follows

f(g, h)Σ((K ∪ ιρ(Kρ))
•) ⊆ (f(g, h)Σ(K) ∪ ιρ′(g(Kρ)))

• (5)

• since g; ιρ′ = ιρ; f(g, h) and also given the commutativity in the pushout
diagram, it follows from here that

f(g, h)Σ(K) ∪ ιρ′(g(Kρ)) |= f(g, h)Σ((K ∪ ιρ(Kρ))
•) (6)

2

The following theorem establishes the semantics of renaming, showing the
connection between the semantics of the initial module and the semantics of
the module obtained by means of renaming.

Theorem 3.10 GivenM = (ρ,Kρ, ψ,Σ, K) a module specification,M∗(g, h)
its renaming by g and h and m ∈Mod(M∗ (g, h)):

m |=M∗ (g, h)⇒ m �h|=M
15
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If additionally the inclusions are conservative, m |=M∗ (g, h) iff m �h|=M

Proof.

(i) ⇒
Assume m |= M ∗ (g, h). Then m |= V th(M ∗ (g, h)) and there is

m′ ∈Mod(Σ(g,h)) with m′ �ψ′= m and m′ �ρ′ |= g(Kρ).
Using Theorem ?? above and Definition ??, it follows m �h|= V th(M).
Given g; ιρ′ = ιρ; f(g, h), h; ιψ′ = ιψ; f(g, h) and the commutativity in

the pushout square, it follows m′ �f(g,h)Σ
is an expansion of m �h such

that its reduct to ρ satisfies the assumed theorems.
Therefore m �h|=M.

(ii) ⇐
Assume m �h|= M and inclusions are conservative. Then there is

m′ ∈Mod(Σ(g,h)) such that m′ �ψ′= m.
Then (see Figure ??), it follows m′ �f(g,h)Σ

�ιψ= m �h|= ι−1
ψ ((K ∪

ιρ(Kρ))
•) whence, given aforementioned commutative squares, m |=

V th(M∗ (g, h))

2

Let us go back to the Xor example at the beginnig of the section. The
following module can be used to define symmetric difference on sets:

Xor * (Bool |-> Set, or |-> union, and |-> intersect,

not |-> complement, xor |-> sminus)

3.2.2 Hiding

As previously stated, a hiding operations retracts a part of the visible signature
back into the hidden signature. For example, one may define natural numbers
on top of integers by first retracting the substraction operation, renaming and
then adding a total order on numbers and some properties of the numbers with
respect to this order. This translated as a hiding, followed by a renaming and
an enriching.

Definition 3.11 Given a module specification M = (ρ,Kρ, ψ,Σ, K) and ι :
ψ′ ↪→ ψ, then the hiding is defined as the module specification

ψ′2M = (ρ,Kρ, ψ
′,Σ, K)

Notice that the inclusion is from the new visible signature to the old one,
since we are removing symbols from the latter. Back to the Xor example,

sort Bool2Xor

hides the xor operator.

16
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Fig. 5. Hiding

Theorem 3.12 Given M = (ρ,Kρ, ψ,Σ, K) a module specification and
ψ′2M the module specification induced by hiding (where ι : ψ′ ↪→ ψ), the
pair (1ρ, ι) : ψ′2M→M is a module specification morphism.

Proof.

The conclusions follows since 1ρ is trivially a presentation morphism and,
given ιψ′ = ι; ιψ (see Figure ??), it follows ι(ι−1

ψ′ (Γ)) ⊆ ι−1
ψ (Γ), therefore

ι(V th(ψ′2M)) ⊆ V th(M) (where Γ = (K ∪ ιρ(Kρ))
•). 2

The semantics of hiding is as expected, the models of the new module are
the reducts (via inclusions) of the models of the original module. Intuitively,
the interpretations of the hidden symbols are deleted.

Theorem 3.13 Given M = (ρ,Kρ, ψ,Σ, K) a module specification, ψ′2M
the module specification induced by hiding (ι : ψ′ ↪→ ψ) and m ∈ Mod(M),
then

m |=M⇒ m �ι|= ψ′2M
If additionally the inclusions are conservative, m |=M iff m �ι|= ψ′2M.

Proof.

(i) ⇒
Let m′ be an expansion of m. Then m′ is also an expansion of m �ι

(see Figure ??).
Then, if m = m′ �ψ|= V th(M), also m �ι|= V th(M) and since it has

an expansion, it follows m �ι|=M.

(ii) ⇐
Assume m �ι|=M. Then m |= V th(M).
If the inclusions are conservative, then there is an expansion m′ of m

and since m |= V th(M), it follows m′ �ρ|= Kρ.

2

Note: It might be worth investigating the effects of relaxing the restric-
tions on a module specifications, i.e. ’hiding’ symbols and/or sentences from
the requirements (ρ′ ↪→ ρ, Kρ′ ⊂ Kρ).

As long as the visible sentences of the ’relaxed’ module remain unchanged,
this operation could be done consistently, however enforcing this condition is

17
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Fig. 6. Enriching

not computationally feasible.

3.2.3 Enriching

An enriching operation adds new elements to the existing module. Given the
complexity of a module, this can mean many things. One can add, as notable
cases:

• new hidden symbols, usually specifying either new behaviours of new con-
structs, if the symbols are also added to the visible signature, or otherwise
more complex behaviours of old constructs;

• new visible symbols: if these symbols were already in the hidden signature,
this operation can be seen as the reverse of hiding; if not, these new symbols
are added in Σ as well, usually specifying new constructs;

• new required symbols: if needed to specify the new behaviours mentioned
above;

• new required sentences for old symbols: these constrain the required con-
structs; one example may be an enriching from a module requiring a pre-
order, to a module requiring a partial order.

Definition 3.14 Given a module specificationM = (ρ,Kρ, ψ,Σ, K) and an-
other module specificationM′ = (ρ′, Kρ′ , ψ

′,Σ′, K ′) such that ρ ↪→ ρ′, ψ ↪→ ψ′

and Σ ↪→ Σ′, the enriching of M by M′ is defined as

M∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′) = (ρ′, Kρ ∪Kρ′ , ψ

′,Σ′, K ∪K ′)

Theorem 3.15 Given M = (ρ,Kρ, ψ,Σ, K), M′ = (ρ′, Kρ′ , ψ
′,Σ′, K ′) two

module specifications such thatM∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′) is an enriching (of

M by M′), the pair (ρ ↪→ ρ′, ψ ↪→ ψ′) :M→M∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′) is

a module specification morphism.

Proof.

Let ι1 : ρ ↪→ ρ′, ι2 : ψ ↪→ ψ′ and ι3 : Σ ↪→ Σ′.

Then:

• ι1 : (ρ,Kρ) → (ρ′, Kρ ∪ Kρ′) is trivially a presentation morphism (since
Kρ ⊆ Kρ ∪Kρ′ thus Kρ ⊆ (Kρ ∪Kρ′)

•);

18
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• ι2(V th(M)) ⊆ V th(M′) or ι2(ι−1
ψ ((K ∪ ιρ(Kρ))

•)) ⊆ ι−1
ψ′ ((K ∪K ′∪ ιρ′(Kρ∪

Kρ′))
•):

2

Predictably, the models of the enriched module are expansions of the mod-
els of the original module.

Theorem 3.16 Given M = (ρ,Kρ, ψ,Σ, K), M′ = (ρ′, Kρ′ , ψ
′,Σ′, K ′) two

module specifications such thatM∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′) is an enriching (of

M by M′) and m ∈Mod(M∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′)), then

m |=M∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′)

implies
m �ψ|=M

If additionally the inclusions are conservative,

m |=M∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′)

iff
m �ψ|=M

Proof.

(i) ⇒
Let m′ be an expansion of m to Σ′. Then m′ �Σ is an expansion of

m �ψ as (m′ �Σ) �ψ= (m′ �ψ′) �ψ= m �ψ.
Assume m |= V th(M∗ (add ρ′, Kρ′ , ψ

′,Σ′, K ′)). Then it follows

m′ �Σ|= K ∪ ι−1
ρ (Kρ) (7)

therefore
m �ψ|= V th(M) (8)

(ii) ⇐
If the inclusions are conservative, then m has an expansion m′ to Σ′.

Furthermore, m′ �Σ is an expansion of m �ψ.
Then we only need to prove that if m �ψ|= V th(M), then m |=

V th(M∗ (add ρ′, Kρ′ , ψ
′,Σ′, K ′)), which can be done analogously to the

previous case.

2

Note: These are some particular cases of enriching that might arise in
practice:

• Basic enriching The enriching morphism is (1ρ, ψ ↪→ ψ′) and Kρ′ = ∅; this
is the case where new elements are added and specified completely, without
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adding anything else to the required signature ρ. In the case of the Xor

example, a case of basic enriching is

Xor * (add

exports op xnor: Bool Bool -> Bool

rule X:Bool xnor Y:Bool => (X and Y) or (not X and not Y))

• Constraining The enriching morphism is (ρ ↪→ ρ′, 1ψ); this is the case where
new elements are required to define the module, with no effect on the output.
One further particular case is the one where the requirement inclusion is an
identity, i.e. only new sentences are required (therefore the term for this
kind of enriching); In the case of the Xor example, a case of constraining is
requiring an additional property of the boolean operations

Xor * (add requires eq not (X:Var or Y:Var) = not X and not Y)

• Completeness preserving enriching New elements are added both to the
required signature and the exported signature; this can be seen as a single
inclusion (of intersections), wherefrom the new interface and requirements
can be deduced (as pushouts).

3.2.4 Aggregation

Aggregation means combining two modules into one. The signatures and sen-
tences of the resulting module are unions of the respective signatures and
sentences of the initial modules.

Definition 3.17 Given two module specifications M = (ρ,Kρ, ψ,Σ, K) and
M′ = (ρ′, Kρ′ , ψ

′,Σ′, K ′), their aggregation is defined as

M+M′ = (ρ ∪ ρ′, Kρ ∪Kρ′ , ψ ∪ ψ′,Σ ∪ Σ′, K ∪K ′)

This definition is correct since by definition of coproducts there is a unique
inclusion ι∪ρ : ρ ∪ ρ′ ↪→ Σ ∪ Σ′ and a unique inclusion ι∪ψ : ψ ∪ ψ′ ↪→ Σ ∪ Σ′

such that:

• ιρ; ι∪ρ = ι1; ιΣ
• ιψ; ι∪ψ = ι2; ιΣ
• ιρ′ ; ι∪ρ = ι3; ιΣ′

• ιψ′ ; ι∪ψ = ι4; ιΣ′

(see also Figure ??) .

Furthermore, this operation is a simple module morphism, where the sig-
nature morphisms are inclusions, also translating visible theorems to visible
theorems.

Theorem 3.18 Given two module specifications M = (ρ,Kρ, ψ,Σ, K) and
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Fig. 7. Aggregation

M′ = (ρ′, Kρ′ , ψ
′,Σ′, K ′) and their aggregation M+M′, the pairs (ιρ, ιψ) and

(ιρ′ , ιψ′) are module specification morphisms.

Proof.

For (ιρ, ιψ):

• ιρ is trivially a presentation morphism from (ρ,Kρ) to (ρ ∪ ρ′, Kρ ∪ Kρ′)
(since Kρ ∪Kρ′ |= Kρ)

• ιψ(V th(M)) ⊆ V th(M+M′) or
ιψ(ι−1

2 ((K ∪ ι1(Kρ))
•)) ⊆ ι−1

∪ψ((K ∪K ′ ∪ ι∪ρ(Kρ ∪Kρ′))
•) as follows :

ιψ(ι−1
2 ((K ∪ ι1(Kρ))

•))

= ι−1
∪ψ(ιΣ((K ∪ ι1(Kρ))

•))(given the commutative diagram)

= ι−1
∪ψ((ιΣ(K ∪ ι1(Kρ)))

•)

= ι−1
∪ψ((ιΣ(K) ∪ ιΣ(ι1(Kρ)))

•)(since Sen preserves inclusions)

= ι−1
∪ψ((ιΣ(K) ∪ ι∪ρ(ιρ(Kρ)))

•)

⊆ ι−1
∪ψ((K ∪K ′ ∪ ι∪ρ(Kρ ∪Kρ′))

•)

The proof for (ιρ′ , ιψ′) is analogous. 2

Going further to the semantics, it is easy to retrieve models of the initial
modules, as reducts of a model of an aggregated module. However, we need
the model functor to preserve coproducts in order to be able to define models
of the aggregated module, starting from models of the inital module.

Theorem 3.19 Given two module specifications M = (ρ,Kρ, ψ,Σ, K) and
M′ = (ρ′, Kρ′ , ψ

′,Σ′, K ′), their aggregationM+M′, and m ∈Mod(M+M′),
then

m |=M+M′ iff m �ψ|=M and m �ψ′ |=M′

Proof.

• ⇒ Assume m |=M+M′

Then m �ψ|=M as follows:
m |= M +M′ implies m |= V th(M +M′) and given Theorem ?? this

implies m �ψ|= V th(M) thus m �ψ|=M.
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Furthermore, let m′ be an expansion of m to Σ ∪ Σ′. Then

(m′ �ιΣ) �ι2 = m′ �ι2;ιΣ

= m′ �ιψ ;ι∪ψ

= (m′ �ι∪ψ) �ιψ
= m �ψ

thus m′ �ιΣ is an expansion of m �ψ to Σ.
Analogously m �ψ′ |=M′.

• Assume m �ψ|=M and m �ψ′ |=M′.
Let m′ be an expansion of m �ψ to Σ and m′′, an expansion of m �ψ′ to

Σ′, i.e. m′ �ι2= m �ψ and m′′ �ι4= m �ψ′ . Given the hypothesis, we have
that

m′ |= K ∪ ι1(Kρ)

and

m′′ |= K ′ ∪ ι3(Kρ′) (9)

From this we can find an expansion of m using the model amalgamation
property.

Let ι∩ψ : ψ∩ψ′ ↪→ ψ, ι∩ψ′ : ψ∩ψ′ ↪→ ψ′, ι∩Σ : Σ∩Σ′ ↪→ Σ, ι∩Σ′ : Σ∩Σ′ ↪→
Σ′ as in Figure ??.

Since the intersections are coproducts in the category of inclusions, given
the pair (ι∩ψ; ι2, ι∩ψ′ ; ι4), it follows that there is a unique inclusion ι (see
Figure ??) such that ι; ι∩Σ = ι∩ψ; ι2 and ι; ι∩Σ′ = ι∩ψ′ ; ι4.
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Then:

m′ �ι∩ψ ;ι2 = (m′ �ι2) �ι∩ψ
= (m �ψ) �ι∩ψ
= m �ιψ ;ι∩ψ

= m �ιψ′ ;ι∩ψ′

= (m �′ψ) �ι∩ψ′

= (m′′ �ι4) �ι∩ψ′

= m′′ �ι∩ψ′ ;ι4

and since (Σ ∪Σ′, ιΣ, ιΣ′) is a pushout in the category of inclusions (of pair
(ι∩ψ; ι2, ι∩ψ′ ; ι4)), it follows using the model amalgamation property that
there is a unique model m0 ∈ Mod(Σ ∪ Σ′) such that m0 �Σ= m′ and
m0 �Σ′= m′′.

Then,

(m0 �ι∪ψ) �ιψ = (m0 �ιΣ) �ι2
= (m0 �Σ) �ι2
= m′ �ι2
= m �ιψ

and analogously (m0 �ι∪ψ) �ιψ′= m �ιψ′ . But since ψ ∪ ψ′ is a coproduct,
and Mod preserves coproducts (i.e. for any models m1 ∈ Mod(ψ), m2 ∈
Mod(ψ′), there is a unique model m3 ∈Mod(ψ ∪ ψ′) such that m3 �ψ= m1

and m3 �ψ′= m2) it follows that m0 �ι∪ψ= m, thus m0 is an expansion of m.
Furthermore, from m0 �ιΣ= m′ |= K ∪ ι1(Kρ) and m0 �ιΣ′= m′′ |= K ′ ∪

ι3(Kρ′), it follows, on one hand,

m0 |= K ∪K ′ (10)

and on the other

m0 |= ιΣ(ι1(Kρ)) = ι∪ρ(ιρ(Kρ)) (11)

and analogously
m0 |= ι∪ρ(ιρ′(Kρ′)) (12)

thus
m0 |= ι∪ρ(Kρ∪Kρ′ ) (13)

thus
m0 |= (K ∪K ′ ∪ ι∪ρ(Kρ ∪Kρ′))

• (14)

and since m0 �ι∪Σ
= m, it follows

m |= ι−1
∪Σ((K ∪K ′ ∪ ι∪ρ(Kρ ∪Kρ′))

•) = V th(M+M′) (15)
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thus m |=M+M′.

2

4 Conclusions and Future Work

We have defined abstract modules and module operations intended to be used
for the K framework; apart from the constructs and behaviours it defines - as
a signature and set of sentences, an abstract module specifies which of those
constructs it exports and what it requires other modules to export. Module
operations defined and analyzed here are: renaming, hiding, enriching and
aggregation.

The K institution is assumed to be an inclusive institution with strong
inclusions and pushouts which preserve inclusions; additionally, the model
functor is required to preserves pushouts and coproducts. Formally defin-
ing the K institution, as well as proving that these properties hold for the
instititution, are the subject of future work.

Other directions of future work are analyzing parametrization and some
properties of the module system, as well as implementing the module system
in the K tool.
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[12] Durán, Francisco, and José Meseguer, Maude’s module algebra, Sci. Comput. Program. 66
(2007), 125–153

[13] Astesiano, Egidio, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses,
Donald Sannella, and Andrzej Tarlecki, CASL: the Common Algebraic Specification Language,
Theor. Comput. Sci. 286 (2002), 153–196

[14] Mac Lane, Saunders, ”Categories for the Working Mathematician”, Springer, 1971

[15] Diaconescu, Razvan, ”Institution-independent Model Theory”, Birkhäuser, 2008
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