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Abstract. We present a novel probabilistic model and specifica-
tion language for spatial relations. Qualitative spatial logics such as
RCC are used for representation and reasoning about physical en-
tities. Our probabilistic RCC semantics enables a more expressive
representation of spatial relations. We observe that reasoning in this
new framework can be hard. We address this difficulty by using a
factored representation based on Markov Random Fields.

We formally present the syntax and semantics of a probabilistic
RCC. We then use Markov Random Fields to represent our models
compactly. Using this representation, we show a basic algorithm for
answering queries about the probability of a relation to hold between
two entities. Finally, we illustrate the effectiveness of the new ap-
proach experimentally over a small set of examples.

1 Introduction
We provide a logic for representing and reasoning about spatial el-
ements, in the presence of uncertainty. Our framework combines
a high-level approach based on qualitative spatial reasoning, that
avoids the pitfalls and complexities of pixel-level reasoning, with a
probabilistic semantics, able to deal with and quantify uncertainty.

Reasoning about space at the pixel level requires too complex
computations and does not capture higher-level properties of objects.
As a solution, higher-level qualitative calculi have been introduced,
such as Region Connection Calculus, or RCC [7]; however, in such
calculi there are no shades of gray in representing uncertainty. We
take the flexible, high-level approach of qualitative spatial reasoning,
RCC-8 in particular, and define probabilistic models.

Using our probabilistic spatial calculus, we are able to answer
more accurately questions about the relations between regions: in
classic RCC, uncertainty with respect to the base relation that holds
between two regions means that some base relations are possible.
There is no cue as to which of these relation is more likely. In the
worst case, the entire base relation is possible. However, generally,
in real world situations, some relations might be more probable than
others; using our probabilistic calculus, one can find the probabilities
for all the base relations between the two regions and then get, rather
than a set of relations, the most probable base relation.

An example of an application for our calculus is recreating a spa-
tial landscape, consisting of all spatial relations that hold between all
entities, from a natural language description. The landscape descrip-
tion can be analysed to extract an initial set of spatial relations as the
first, incomplete, landscape, and then the most likely complete im-
age can be recreated using inference in probabilistic RCC. The tech-
niques used here could be extended to other spatial formalisms, that
are able to capture other meaningful relations between entities. Re-
constructing a spatial landscape from text can be useful to answering
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deeper understanding queries regarding the text. This kind of queries
can nowadays be answered in the context of natural language pro-
cessing by means of textual entailment [9]. Here, either one uses
only lexical cues, which can only lead to a shallow understanding
of the text, or one learns to infer deeper, semantic relations implied
by the text by training on large corpora of annotated textual entail-
ment pairs. In the latter case, much effort is spent on annotating a
corpus and feature engineering. By using qualitative spatial reason-
ing, one only needs to spend effort in extracting the obvious spatial
relations from the text, whereas the deeper understanding queries can
be answered by reasoning in the underlying spatial logic.

The paper is structured as follows: first, we present some back-
ground notions on RCC. Then, we describe the syntax, semantics and
inference for our calculus. Next, we present the MRF-based repre-
sentation and inference. We then show the results on some examples.
Finally, we give an overview of related work and conclude.

2 Background
Qualitative Spatial Reasoning [3] is a term used for any relational
reasoning technique for which the objects are spatial entities.

Region Connection Calculus (RCC), introduced by Randell, Cui
and Cohn in 1992 [7], is a qualitative spatial calculus used to reason
about the relations between regions. The distinction between base
relations is made based on either connectedness or the mereological
’part of’ relation. The two definitions are equivalent, as the two re-
lations can be defined by means of each other. Given the possible
distinctions and additional information considered (e.g., whether the
region borders are taken into account or not), the space of possible
relations is broken into a set of jointly exhaustive and pairwise dis-
joint, or JEPD, base relations.

For RCC-8, the base relations are:

• disconnected (DC) - the regions are not connected, i.e. they share
no common parts;

• externally connected (EC) - the regions are connected, but their
interiors are not;

• partially overlap (PO) - the regions’ interiors are connected, but
there are regions that are part of either one but not the other

• tangential proper part and its inverse (TPP, TPPI) - one region is
a part of the other, but that region is not part of the other’s inte-
rior (equivalently anything that connects to the inner region also
connects to the outer region);

• non-tangential proper part and its inverse (NTPP, NTPPI) - one
region is a part of the other one’s interior;

• equivalent (EQ) - each region is part of the other.

RCC-8 can be formalized as a relation algebra in the sense of
Tarski based on the set algebra over 2B , whereB is {DC, EC, PO,
EQ, TPP, NTPP, TPPI, NTPPI} (the set of base relations).



To complete the relation algebra, each relation has a converse (TPP
is the converse of TPPI, NTTP is the converse of NTPP, the rest of
the base relations are each its own converse), and the composition
table for base relations is as shown by Wölfl et al. [12]. EQ is the
composition identity.

For RCC-5, the border information is not considered, so EC and
PO are coalesced into O (overlap), TPP and NTPP are collapsed into
PP (proper part), and analogously for their converse relations. Con-
sequently B is {DC,O,EQ,PP,PPI} and the relation algebra is
changed accordingly.

3 Probabilistic RCC
Let us consider the following image description:

John’s office is on the second floor of the building. Andy’s office
is across the corridor, right next to the service room. There’s a tree
right beside Andy’s office window. Andy is standing by the window.
John realized a couple of minutes ago he needed something from the
service room, and thought he’d pass by Andy’s office on his way there
to exchange a few words.

Figure 1. Example of an image

When one reads this description, one builds a mental abstract im-
age (e.g. Figure 1), consisting of spatial relations between entities,
and based on this particular image, one can answer questions on what
the most likely relative positions of the entities in this world are. Each
of these abstract images is similar to a probabilistic RCC model.

In general, in the problem we are trying to solve, we are given a set
of regions in a topology, a set of region names or region constants,
and a set of spatial constraints on them expressed as a formula. We
want to be able to answer queries regarding the probability of certain
relations to hold between certain pairs of regions.

3.1 Syntax
In general, the signature of probabilistic RCC is a first-order logic
signature of a particular form, containing: a set of constants C (the
region names); and a set of arity 2 relations B (the base relations).

For RCC-8, B = {DC,EC,PO,EQ,TPP,NTPP,
TPPI,NTPPI} and for RCC-5, B = {DC,PO,EQ,PP,PPI}.

Two probabilistic RCC-8 (RCC-5) signatures may differ from
each other on their set of constants. This leads to the following defi-
nition of an RCC-8 signature:

Definition 1 A probabilistic RCC signature is a set of region con-
stants C.

In the story described above, the signature contains the constants:
Andy, John, the corridor, the service room, the tree, and the offices.

Henceforth we will refer to RCC-8 only; the results can easily be
applied to RCC-5.

A basic sentence encodes the set of constraints for the problem;
this is just a ground FOL sentence. Our example can be encoded as
the basic sentence:

φ = TPP (OfficeJohn,Floor) ∧ TPP (Corridor ,Floor) ∧
TPP (OfficeJohn,Floor) ∧ TPP (Corridor ,Floor) ∧
EC(OfficeJohn,Corridor) ∧
EC(OfficeAndy ,Corridor) ∧
DC(OfficeJohn,OfficeAndy) ∧
EC(ServiceRoom,Corridor) ∧
EC(Tree,Floor) ∧ EC(OfficeAndy ,ServiceRoom) ∧
EC(Tree,OfficeAndy) ∧ TPP (John,Floor) ∧
TPP (Andy ,OfficeAndy) ∧
TPP (OfficeJohn,Floor) ∧
TPP (OfficeAndy ,Floor) ∧
TPP (ServiceRoom,Floor) ∧
DC(ServiceRoom,OfficeJohn) (1)

Definition 2 The basic sentences of probabilistic RCC-8 are defined
inductively as follows:

• atoms are of the form r(a, b), where a, b ∈ C and r ∈ B;
• if φ and ψ are basic RCC-8 sentences, then φ ∨ ψ and φ ∧ ψ are

also basic RCC-8 sentences;
• if φ is a basic RCC-8 sentence, then ¬φ is also a basic RCC-8

sentence

In our example, a query is on the probability of the ’part-of’ rela-
tion between John and each of the rooms. In general, the queries we
want to be able to answer are about the probability of a relation to
hold between two regions. This relation may be either a base relation
(’externally connected’) or a general relation (a disjunction of base
relations). In this case, ’part-of’ is the disjunction of ’proper part’,
’tangential proper part’ and ’non-tangential proper part’ relations.

One property of PRCC sentences, that stems from JEPD-ness,
namely the fact that the negation of a literal can be rewritten as a
positive disjunction, is the following:

Property 1 Any basic sentence of probabilistic RCC-8 can be writ-
ten as a positive sentence

Next, we define query-type sentences. These are the sentences that
express probabilities of relations and, as the name implies, will be
used to answer queries. A conditional query-type sentence expresses
the probability of a relation given a basic type sentence: this is the
kind of sentence that generally encodes a full problem. The semantics
of these sentences is defined using the semantics of non-conditional
query-type sentences.

In the following, α is the probability we are looking for:
pα(∨r∈Bqr(a, b)) has the intuitive meaning that the probability that
r(a, b) holds is α.

Definition 3 If 0 ≤ α ≤ 1, a, b ∈ C, Bq ⊂ B and φ is a basic
sentence, then:

• pα(∨r∈Bqr(a, b)) is a non-conditional query-type sentence or a
query-type atom;

• pα(∨r∈Bqr(a, b) | φ) is a conditional query-type sentence.

Definition 4 A probabilistic RCC-8 sentence is either a basic sen-
tence or a query-type sentence.



3.2 Semantics
In our example, a model is any spatial configuration and assignment
of names to elements in the spatial configuration, i.e. which room is
Andy’s office, that satisfies the set of constraints given.

In general, a model of a PRCC signature will specify the topology,
a subset of this topology (the ’working’ regions), the set of interpreta-
tions of region constants in the ’working’ region set and a probability
distribution on these interpretations.

Let T be a topology on some universe U and let X ∈ R be a
closed set in T . In the following, let Int(X) be the interior ofX and
Γ(X) = X − Int(X) be the border of X .

Definition 5 Given an RCC-8 signature C, a model M of the signa-
ture is a structure of the form M = (U, T,R,W, P ), where:

• U is a (possibly infinite) universe of points;
• T is a topology on U ; the closed regular sets in T are called re-

gions;
• R ⊂ T is a finite set of regions;
• W = {(Uw, w) | w : C ] B → Uw ] (Uw × Uw)} is a set of

possible worlds, where for each possible world w:

– Uw = R is the world universe;

– w|C : C → Uw is an interpretation of constant symbols as
regions;

– w|B : B → Uw × Uw is an interpretation of base relation
symbols

and the interpretation of base relation symbols w|B is such that:

– ∀X,Y ∈ Uw, w(DC)(X,Y ) iff X ∩ Y = ∅;
– ∀X,Y ∈ Uw, w(EC)(X,Y ) iff Int(X) ∩ Int(Y ) = ∅ and
X ∩ Y 6= ∅;

– ∀X,Y ∈ Uw, w(PO)(X,Y ) iff Int(X) ∩ Int(Y ) 6= ∅ and
X * Y and Y * X;

– ∀X,Y ∈ Uw, w(EQ)(X,Y ) iff X = Y ;

– ∀X,Y ∈ Uw, w(TPP )(X,Y ) iff X ( Y and X * Int(Y );

– ∀X,Y ∈ Uw, w(TPPI)(X,Y ) iff w(TPP )(Y,X)

– ∀X,Y ∈ Uw, w(NTPP )(X,Y ) iff X ⊆ Int(Y );

– ∀X,Y ∈ Uw, w(NTPPI)(X,Y ) iff w(NTPP )(Y,X).

• P : W → [0, 1] (with Σw∈WP (w) = 1) is a probability distri-
bution over the set of interpretations.

These properties of interpretation functions also ensure that the set
w(B) forms a partition over Uw×Uw, or in other words the relations
in w(B) are jointly exhaustive and pairwise disjoint (JEPD).

In the rest of the paper, we will assume the topological space of
the model fixed. The interpretation of base relations in this space will
be the same for all models so we will omit both the topology and the
interpretation of relations from the definition of a model as implied.
Moreover, for all models we will have the set of interpretations to
be the entire set of functions from C to R, so W will be completely
defined by R and can thus be omitted as well (restrictions to a sub-
set of this I can be made by forcing the probability of the missing
interpretation functions to 0).

For basic sentences, sentence satisfaction is defined for every pos-
sible world, inductively on the structure of the sentence, as in any
fragment of FOL. A sentence is satisfied if it is satisfied in every
world that has a non-zero probability.

Definition 6 Given model M = (R,W, P ), the satisfaction of a
basic formula in a possible world w ∈W is defined inductively as:

• w |= r(a, b) iff (w(a), w(b)) ∈ w(r);
• w |= φ ∧ ψ iff w |= φ and w |= ψ;
• w |= ¬φ iff w 2 φ;
• w |= φ ∨ ψ iff w |= ¬(¬φ ∧ ¬ψ);

We say a model M = (R,W, P ) satisfies a basic formula φ and
write M |= φ iff w |= φ for all w ∈W with P (w) > 0.

Next, we will show how to answer queries, given a model and a
set of constraints. The intuition is that, when we are presented with
a new piece of information about the world, we constrain our model
of the world so as to discard all interpretations that are not consistent
with the new piece of information. The model we end up with is
what we will call the restriction of a model via a basic-type sentence.
Restricting the model via a sentence lowers to 0 the probabilities of
all the interpretations that do not satisfy the sentence, and scales the
other probabilities such that they still sum to 1.

Definition 7 Let φ be a basic formula and M = (R,W, P ) a prob-
abilistic RCC-8 model; then we can define the restriction of M via φ
as M |φ = (R,W, P |φ), where:

• P |φ(w) = P (w) · 1
Z(φ)

if w |= φ;
• P |φ(w) = 0 if w 2 φ

and Z(φ) = Σw|=φP (w) is the normalization constant.

ThusM |φ is intuitively the largest submodel ofM that satisfies φ.
In order to answer the query given a set of constraints, we restrict

the model in order for it to satisfy the set of constraints, and then we
sum the probabilities of the interpretations that satisfy the query. So,
the satisfaction of a query-type sentence by a model M is defined as
follows:

Definition 8 Given model M = (R,W, P ), basic sentence φ,
a, b ∈ C, Bq ⊂ B and 0 ≤ α ≤ 1, the satisfaction of query-type
sentence pα(∨r∈Bqr(a, b) | φ) is defined as:

• M |= pα(∨r∈Bqr(a, b)) iff Σw|=∨r∈Bq r(a,b)
P (w) = α;

• M |= pα(∨r∈Bqr(a, b) | φ) iff M |φ |= pα(∨r∈Bqr(a, b)).

It is worth noting that we are really not interested in what exactly
the interpretations of constant symbols in a possible world look like,
but in their relative position. So we can restrict our attention to equiv-
alence classes of possible worlds, under the equivalence relation '
given by the set of base RCC relations that hold in these worlds:

w1 ' w2 iff for each pair a, b ∈ C and for each r ∈ B
w1 |= r(a, b)⇔ w2 |= r(a, b) (2)

This will be particularly useful when introducing the factored repre-
sentation.

3.3 Inference in Probabilistic RCC
Using definitions 6 and 8, we can derive the following alternative
condition for the satisfaction of conditional query-type sentences -
M |= pα(∨r∈Bqr(a, b) | φ):

α =
Σw|=φ andw|=∨r∈Bq r(a,b)

P (w)

Σw|=φP (w)
(3)



It is straigthforward to implement an algorithm that finds α using
this formula. If N is the size of φ, R is the number of regions and
C is the number of constant symbols in the signature, this algorithm
would require O(RC+1) space and O(N ·RC) time.

Notice that this algorithm requires us to know P , the probabil-
ity distribution over possible worlds. If we don’t know it, the proper
probability distribution to use is the one with the maximum entropy,
according to the principle of maximum entropy. The set of possi-
ble worlds being a discrete and finite domain, the maximum entropy
probability distribution is the uniform probability distribution.

Using this observation and the equation (3) derived in the begin-
ning of the previous section, we can compute α in pα(∨r∈Bqr(a, b) |
φ) as:

α =
|{w ∈W | w |= φ and w |= ∨r∈Bqr(a, b)}|

|{w ∈W | w |= φ}| (4)

4 Factored Representation of PRCC
Given a signature C and model M = (R,W, P ), for each pair of
distinct constant symbols a, b ∈ C, let Xa,b

B be the random variable
encoding the base relation that holds between the regions named by
a and b. Then, the probability distribution P over possible worlds
induces a joint probability PB distribution over {Xa,b

B }a,b∈C,a 6=b:

PB(Xp1
B = r1, ..., X

pN
B = rN ) = Σw|=∧1≤i≤N ri(pi)P (w) (5)

where N =
(
C
2

)
, {p1, ..., pN} = {{a, b} ∈ C | a 6= b} and ri ∈ B

for 1 ≤ i ≤ N .
If we consider the model consisting of equivalence classes of pos-

sible worlds, we can recover the probability distribution over these
equivalence classes from the joint probability PB , as:

P ([w]r1(p1),...,rN (pN )) = PB(Xp1
B = r1, ..., X

pN
B = rN ) (6)

where [w]r1(p1),...,rN (pN ) = {w ∈ W | w |= r1(p1) ∧ ... ∧
rN (pN )}.

Therefore, reasoning in probabilistic RCC can be reduced to rea-
soning with such joint probability distributions:

Theorem 1 Given model M = (R,W, P ), basic sentence φ, ex-
pressed as a conjunction of atoms, a, b ∈ C, r ∈ B and 0 ≤ α ≤ 1,
the satisfaction of query-type sentence pα(r(a, b) | φ) can be com-
puted as follows:

• M |= pα(∨r∈Bqr(a, b)) iff PB(Xa,b
B = r) = α;

• M |= pα(∨r∈Bqr(a, b) | φ) iff PB(Xa,b
B = r | φ) = α;

Furthermore, since for every Xa,b
B , the events Xa,b

B = r and
Xa,b
B = r′ are disjoint for every r 6= r′ ∈ B:

Corollary 1 Given model M = (R,W, P ), basic sentence φ, ex-
pressed as a conjunction of atoms, a, b ∈ C, Bq ⊂ B and 0 ≤ α ≤ 1,
the satisfaction of query-type sentence pα(∨r∈Bqr(a, b) | φ) can be
computed as follows:

• M |= pα(∨r∈Bqr(a, b)) iff Σr∈BqPB(Xa,b
B = r) = α;

• M |= pα(∨r∈Bqr(a, b) | φ) iff Σr∈BqPB(Xa,b
B = r | φ) = α.

4.1 Markov Random Fields
A Markov random field (MRF) is a compact representation of a joint
probability distribution by means of an undirected graph describing
conditional independence. More specifically, given a joint probabil-
ity distribution P over random variables X1, X2, ..., XM , an MRF
consits of the following:

Andy John

Corridor Andy's office

rAJ

rJO

rCO

rAC
rJCrAO

rAJ

rJC rAC rCO

rJOrAO

Figure 2. Compact representation of a model

• an undirected graph with vertices X1, X2, ..., XM , such that:

– any two non-adjacent random variables are conditionally inde-
pendent given all the others (pairwise Markov property)

– a random variable is conditionally independent of all the others
given its neighbours (local Markov property)

– any two sets of random variables are conditionally independent
given a third set that separates any path between the two (global
Markov property)

• a set of factors φk associated to the cliques of the graph (over
which k ranges). The joint probability distribution is then:

P (X1, X2, ..., XM ) =
1

Z
Πkφk(X̄k) (7)

where X̄k is the set of variables in clique k and Z is a normaliza-
tion factor called the partition function

Going back to PRCC, we can represent the joint probability dis-
tribution PB as an MRF, using the observation that the base relation
that holds between two regions named a and b is independent of any
other relation that holds in the world, given the relations that hold
between region named a and any other region, and the relations that
hold between any other region and region named b, and these rela-
tions’ duals:

I(Xa,b
B , X

ci,cj
B | Xa,C

B ∪Xb,C
B ∪XC,a

B ∪XC,b
B ) (8)

where Xa,C
B = {Xa,c

B | c ∈ C} and likewise XC,a
B = {Xc,a

B | c ∈
C}. For example, if we know where John is with respect to Andy,
all the rooms on the current floor, and the current floor, and all the
spatial relations that hold between the tree and Andy, the floor and
all the rooms on the floor, then we don’t need to know what spatial
relation holds between the service room and the corridor in order to
find the relation that holds between John and the tree.

This observation does not hold for all PRCC models, and we will
only be able to use this compact representation for those models that
do have this property. Intuitively, this is the case if we don’t have
any prior knowledge of the space of regions R, and indeed in this
case, using the naı̈ve algorithm described in the previous section is
infeasible.

The MRF representation for unstructured models is illustrated on a
simple example in Figure 2, for the case where we restrict our atten-
tion to the subsignature consisting of only Andy, John, the corridor
and Andy’s office. Notice that if (8) holds, then we only have edges
between nodes that share a symbol.

Lemma 1 If the assumption 8 holds for a modelM , then in the MRF
representation of M , there is an edge between nodes Xp

B and Xq
B if

pairs p, q share a constant symbol, i.e. |p ∩ q| = 1.

In this case, the following theorem holds:



Theorem 2 Let C be a probabilistic RCC signature and let
PB(Xp1

B = r1, ..., X
pN
B = rN ) be the probability distribution over

the base relations that hold between the interpretations of every two
constant regions, given an unstructured model M . Then, in the MRF
representation of PB , the largest clique has size C − 1.

Intuitively, every node Xa,b
B (a 6= b ∈ C) in the MRF represen-

tation is connected to two cliques of size C − 1: one containing all
the pairs that share symbol a, and one containing all the pairs that
share symbol b. Other cliques that appear in the MRF are triangles
representing the relations that hold between any three regions. The
interactions represented by those latter cliques stem from the con-
straints imposed by RCC relation composition.

Let X̄a,?
B = (Xa,b

B )b6=a,b∈C be the tuple containing the nodes in
the clique sharing symbol a, and let Xa,b,c

B = Xa,b
B , Xb,c

B , Xc,a
B .

For an unstructured model, one can have any combination of base
relations between a region and all the other regions, i.e., we can as-
sume φ(X̄a,?

B ) a constant and therefore ignore it in the factorization.
Therefore the probability distribution can be written as:

PB(Xp1
B = r1, ..., X

pN
B = rN ) =

1

ZB
Πφa,b,c(X

a,b,c
B ) (9)

4.2 Inference in the Factored Models
In the following we will assume we know the factors
φa,b,c(X

a,b
B , Xb,c

B , Xc,a
B ) in the joint probability distribution. We can

infer the probability α of ∨r∈Bqr(a, b) as the sum of probabilities
of each r(a, b), given an evidence φ = r1(a1, b1)∧ ...∧ rk(ak, bk):

α = Σr∈BqP (r(a, b) | φ)

=
Σr∈BqP (r(a, b), r1(a1, b1), ..., rk(ak, bk))

Σr∈BP (r(a, b), r1(a1, b1), ..., rk(ak, bk))
(10)

using any inference method in the corresponding MRF.
If we further assume φa,b,c(X

a,b
B , Xb,c

B , Xc,a
B ) =

wa,b,cfa,b,c(X
a,b
B , Xb,c

B , Xc,a
B ), where the value of the feature

fa,b,c is 1 if the configuration specified by the relations between a,
b and c is possible and 0 otherwise, we can use any MRF learning
algorithm to infer the set of weights {wa,b,c}a,b,c. We intend to
explore this direction in the future, for the current work we assume
that all the factors are known, or all the weights are 1.

Note that, although all the cliques have size at mostC−1, variable
elimination can lead to factors of greater size. Since every node links
two cliques of size C − 1, eliminating the first variable produces a
clique of size 2(C− 2). Eliminating further variables increases by at
least C − 2 the size of the largest clique, therefore in the course of
running the algorithm, the largest clique may reach size O(N · (C −
2)). Since N =

(
C
2

)
, we get the following theorem:

Theorem 3 Variable Elimination for the factored model of PRCC
has a time complexity of O(2C

3

).

Approximate inference methods such as loopy belief propagation or
sampling are beyond the scope of this paper.

5 Results on Some Examples
We implemented our framework, using the MRF representation for
the joint probability distribution. We used variable elimination as the
inference algorithm. We experimented with answering queries on our
running example (Figure 1) with slight modifications. Figure 3 shows

Figure 3. The running time of answering a query as a function of the
number of region symbols in the signature

the running time as a function of the number of regions, and Figure
4 shows the dependence on the number of constrains.

We got that John is most likely to be in his office, with probability
0.226, and that Andy is standing by the tree with probability 0.38.

We also investigated a simple story, where John is in his office,
and Andy enters the office (Andy partially overlaps both the office
and the corridor). In this case, Andy meets John (the disjunction of
base relations EC and PO) with probability 0.435.

Figure 4. The running time of answering a query as a function of the
number of atoms in the evidence, for different numbers of region constants

6 Related Work
Another way to do probabilistic reasoning in RCC is to use the lan-
guage of Markov Logic Networks [8]. This amounts to representing
PRCC as an MLN built from an axiomatization of classic RCC, such
as the original axiomatization [7]. All constraints imposed by the ax-
iomatization are considered hard, therefore the sentences in the MLN
will have infinite weight. What we do here is to give probabilistic
RCC an individuality of its own, with its own well-defined syntax
and semantics. Furthermore, we encode the PRCC models directly
as Markov Random Fields, taking advantage of the particular inde-
pendence assumptions that stem from the spatial domain.

We will further discuss other related approaches to represent and
reason about uncertainty in Region Connection Calculus.

Cohn et al. [2] address the problem of reasoning in the presence of
vague topological information, more specifically in the case where
the regions have vague boundaries. They introduce the ’egg-yolk’
representation, where each region is divided into its crisp, certain
subregion (the ’yolk’) and a surrounding vague part (the ’white’).



The intuition is that the actual region lies anywhere within the bor-
ders of the ’white’ and necessarily covers the ’yolk’. In this work
there is no quantification for the degree of uncertainty.

Schockaert et al. [11] [10] also deal with vague regions and add
quantifiable uncertainty. Rather than work in a probabilistic setting,
as in our approach, or divide each region, as in the previous approach,
they develop a framework based on fuzzy logic. They take the ’con-
nected’ relation to mean the degree to which regions are connected,
not a crisp truth value as in the classical RCC. With this, they re-
define the entire set of base relations of RCC and subsequently the
RCC framework. In contrast, we keep the classic logical framework
of RCC and give it a probabilistic semantics.

In order to deal with uncertainty regarding regions, Bittner et al.
[1] represent approximate regions by relating them to a frame of ref-
erence consisting of a set of unit regions. The definition of approxi-
mation makes qualitative distinctions based on the coverage of those
unit regions. They then define an approximate region as a set of re-
gions with the same approximation. With this definition, they rewrite
the RCC framework to work with approximate regions.

All of these lines of work look at dealing with or quantifying
vagueness rather than quantifying the likelihood of relations.

Probabilistic logic programming, or PLP [6], resembles our work
mainly in the way they define the satisfaction of probabilistic sen-
tences. One major difference is that, in PLP, each probabilistic for-
mula (representing the probability of a conditional event) is assigned
a probability interval - we are reasoning over single probabilities, not
probability intervals. Another important difference is that any sen-
tence in PLP is a probabilistic sentence; in our case, only the queries
are probabilistic, whereas the knowledge base consists only of sen-
tences expressed in classic RCC.

A maximum entropy semantics has also been defined for PLP [13];
that definition is based on the notion of degree of satisfaction. Since
we do not use probabilistic sentences in our knowledge base, our
maximum entropy model is much more simple.

Kontchakov et al. [5] have proved the sensitivity to the underly-
ing topological space of the complexity of reasoning in a superset of
RCC-8, enriched with a unary conectedness predicate and Boolean
functions over regions. They also prove NP- completeness of satis-
fiability for the calculus enriched with connectedness only, as well
as EXPTIME-hardness of the full superset. Further results [4] prove
reasoning in the 2D Euclidean space RE-hard for the case when
Boolean functions are allowed over regions. We do not make as-
sumptions on the underlying topological space, and we do not talk
about Boolean functions over regions.

7 Conclusions and Further Work

We showed the syntax and semantics of probabilistic RCC-8. We
showed how to represent the models of this calculus compactly, by
using Markov Random Fields to model the joint probability distri-
bution over spatial relations. We then used this framework to an-
swer queries regarding the probabilities of relations between regions,
given a set of constraints, on a small set of examples.

One problem we don’t address is how to handle disjunctive evi-
dence. One way to look at this, is that, writing the evidence in dis-
junctive normal form, every clause serves as evidence for a possible
abstract image of the world. We would then want to combine the
probabilities of base relations that result from each of these possible
images. One could take an optimistic approach and use the maximum
of these probabilities, for every query, but this does not accurately
represent the probability distribution encoded by the model. We will

explore ways to look at disjunctive evidence in future work.
As another line of future work, we want to explore more efficient

algorithms for the compact representation, possibly sampling, and
experiment with real world examples, including learning the weights
from a larger description of the world. We would also like to explore
the idea of allowing quantification over PRCC sentences and using
types of regions to derive meaningful and more general representa-
tions. We believe the approach holds promise for recreating a spatial
scene from a natural language description, so another line of future
work would be exploring this possibility.
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